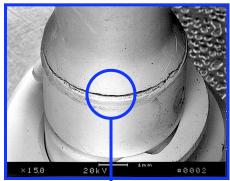
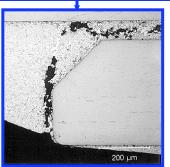
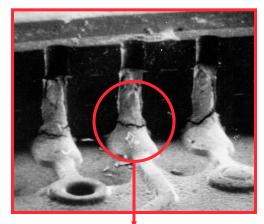
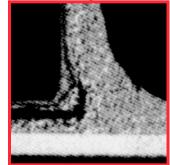
Modeling the aging and reliability of solder joints

Elizabeth Holm, Michael Neilsen, and Paul Vianco Sandia National Laboratories Albuquerque, NM 87185 USA

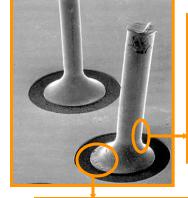

Aging and failure of solder joints

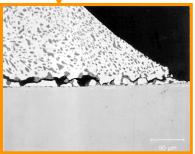

- Typical circuit boards contain thousands of solder joints.
- Solder joints function at a high homologous temperature under thermomechanical fatigue conditions.


⇒Solder joints fail.


surface mount

connectors





through hole

How big is the problem?

- Studies indicate that at least 48% of electronics failures are likely due to solder joint failure.
- Solder joints must remain reliable beyond their initial design lifetimes
 Military and commercial aircraft Satellites
 Nuclear and conventional weapons
- ⇒Solder joints are a **design** problem:

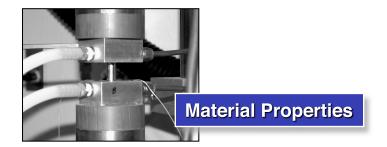
Design for reliability beyond commercial product lifetimes.

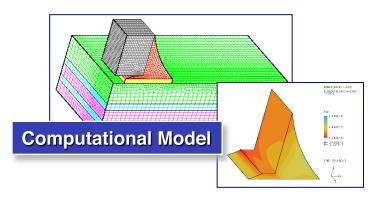
⇒Solder joints are a **stewardship** problem:

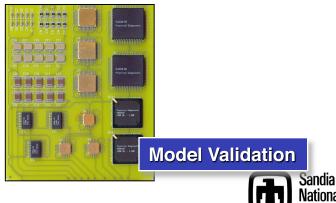
Predict when a component requires replacement - before it fails.

Added complications: New solder technologies

- Legislation and industry standard require change to lead-free solders in future circuit board assemblies.
 - These are new materials, and long-term reliability has not been fully characterized.
 - Many alloy compositions are being considered and used.
 - Surface finish effects are important in these materials.
- New package designs challenge the limits of solder reliability.
 - Higher I/O/finer pitch area-array packages
 - Package-on-package (PoP)
 - Stacked chips
 - System-in-a-package (SIP)
 - Opto-electronic devices
 - High temperature molding compounds
 - High temperature, "green" laminates

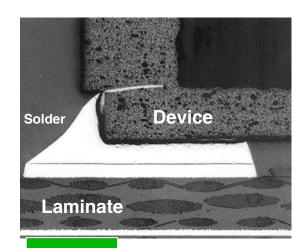

Integrated approach to understanding lifetime prediction and failure in solder joints

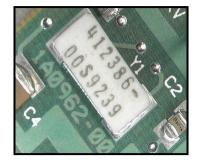

Compile materials properties data for model input parameters.

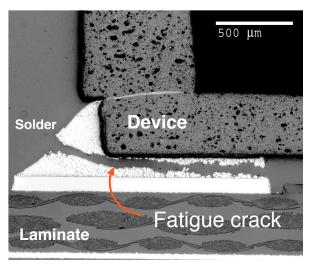


- ·Constitutive equation
- ·Finite element code (mesh)
- Optimization routines

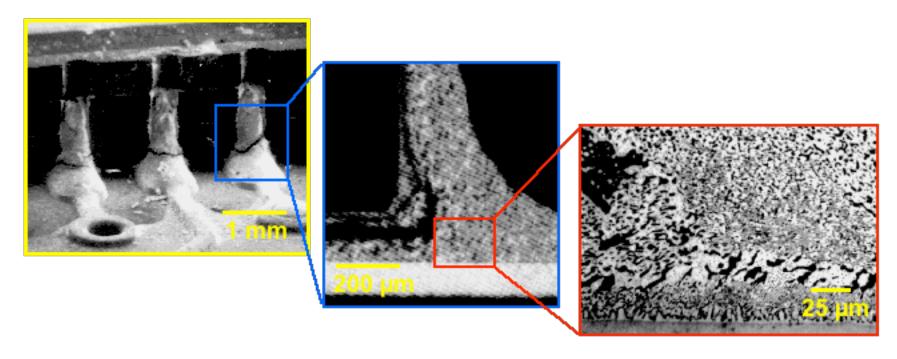
Model validation using limited accelerated aging experiments.





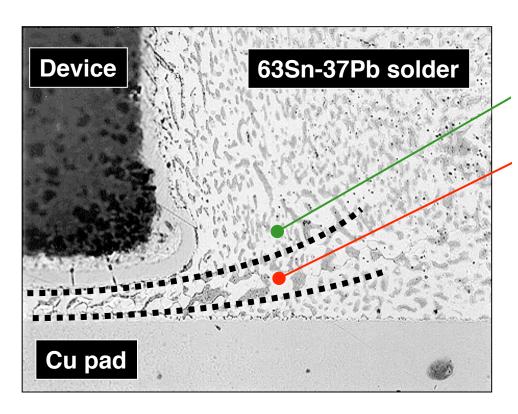


Eutectic Pb-Sn Solders


-55°C / 125°C ... 1000 cycles

Why is microstructure important in PbSn solders?

• The coupling between microstructure and mechanical response causes failure.



strain localization → local coarsening → further softening → failure

microstructural approach to solder modeling

- •Local microstructure determines the local mechanical properties.
- \Rightarrow The microstructural metric is λ , the mean Pb-rich phase particle diameter.

$$[d\gamma/dt]_{fine} = f(\sigma, T, \lambda_{fine})$$

$$[d\gamma/dt]_{coarse} = f(\sigma, T, \lambda_{coarse})$$

The CoMPSIR© Sn-Pb solder fatigue model captures these microstructural effects to predict solder joint lifetimes.

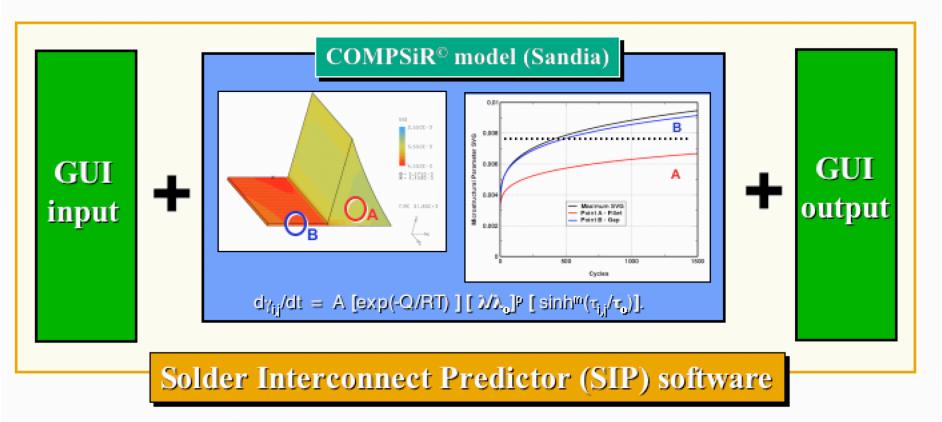
Failure - Lifetime Prediction

A variety of failure criteria are currently being evaluated:

Failure based microstructure

Coffin-Manson

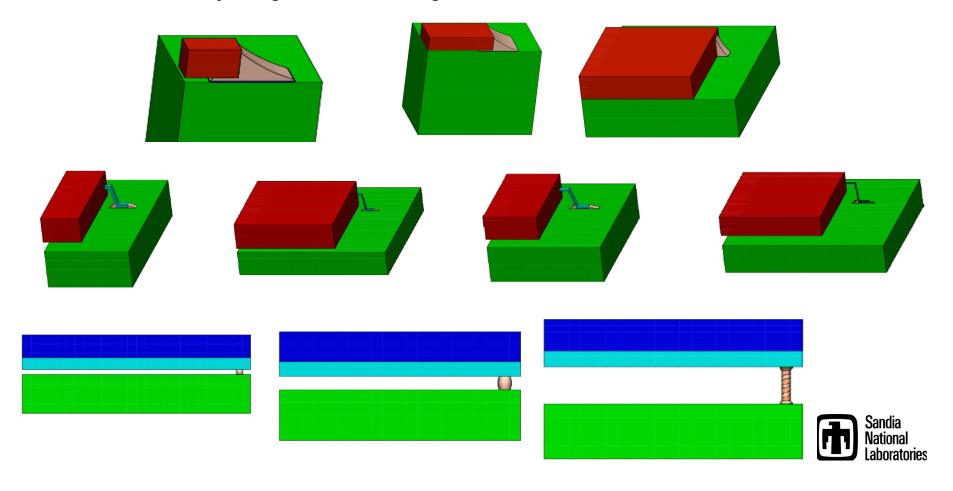
Continuum damage approach


Failure when $\lambda = \lambda_{critical}$

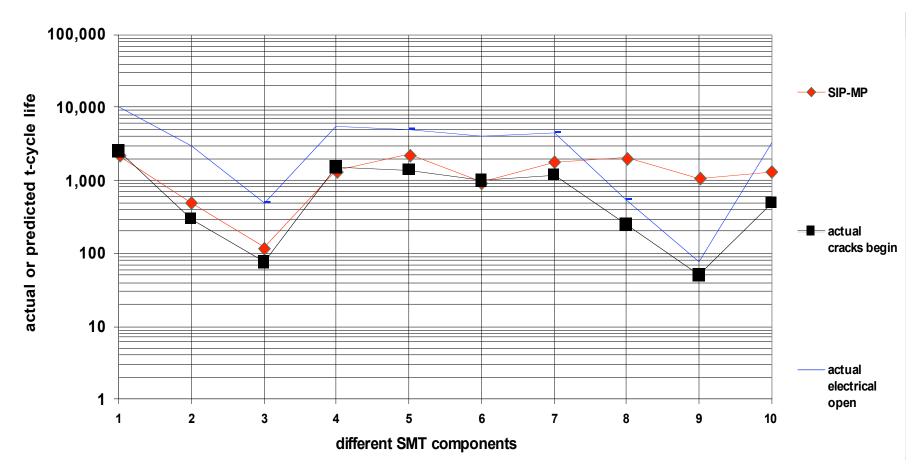
 $N_f^{0.51} \Delta \gamma^P = 1.14$ (Solomon, 86)

Failure when $\omega = \omega_{\text{critical}}$

The solder TMF model is incorporated in a desktop design and analysis package.



- Linux and Windows packages
- Variety of joint geometries
- Variable dimension joint shapes


Is the SIP model predictive?

- A Lockheed-Martin sponsored round robin offered the chance to validate
 SIP in a blind study against experimental data for a variety of solder joints.
- Ten solder joint geometries ranged from surface mount to FP to BGA.

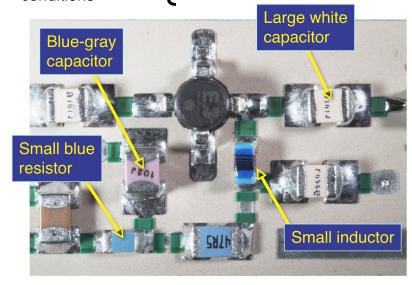
SIP Predictions for Solder Round Robin

- Sandia-SIP (red line) agreed very well with experiment (black line) for most joint types.
- Components 8 and 9 (BGAs) demonstrated mesh refinement issues that we have addressed.

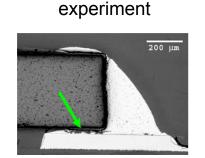
How can we add predictivity?

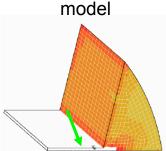
• The Round Robin results showed that crack initiation precedes failure, often by thousands of cycles (blue line).

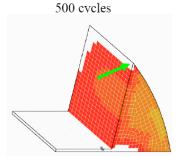
⇒Can we models the actual failure process: cracking to open circuit?

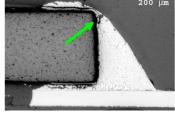

- Fracture propagation is a challenge in FEM implementation, due to stress singularities and nonlinear behavior.
- We take a smeared cracking approach replace cracked elements with weak elastic material.
 - » When λ gets to critical value of 6.0 μ m, elements become weak elastic material with σ = 0.01 **E** : ϵ .
 - » Dramatic change in element mechanical response changes boundary value problem.
 - » No remeshing needed; no numerical difficulties from introduction of a discrete crack.

How well does it work? Comparisons to test vehicle experiments

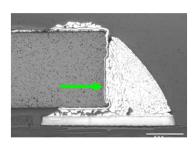

Test vehicle accelerated aging conditions

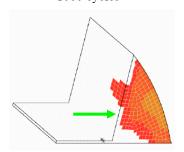

-55°C ... 125°C, 20 min holds; 0, 500, 1000, and 1500 cycles


 SIP results for both crack morphology and joint lifetime agree well with experiments on a test vehicle circuit board.



200 μm



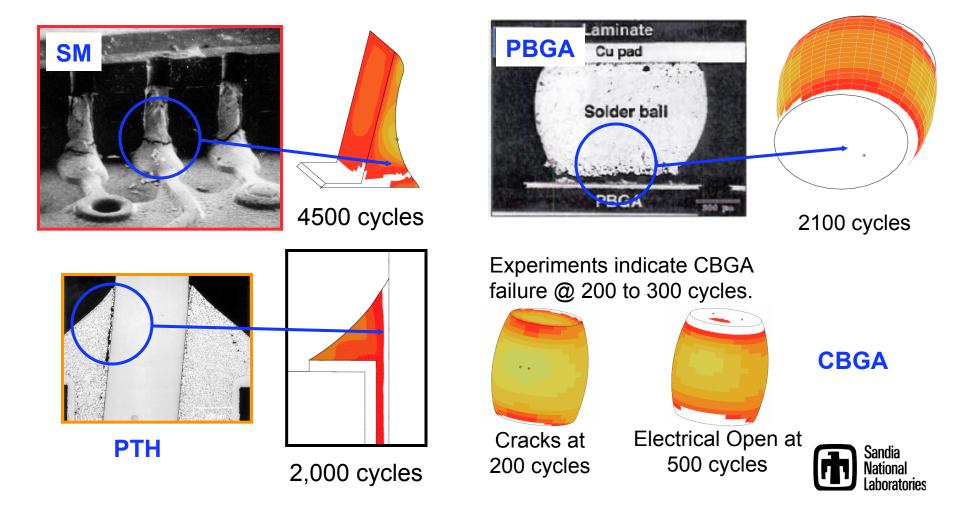


1000 cycles

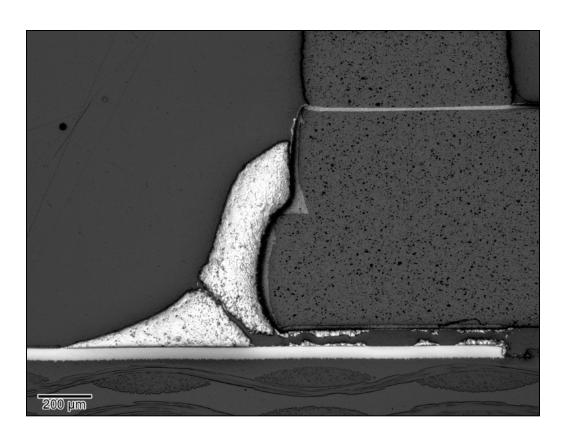
500 cycles

1500 cycles

1500 cycles


Sandia **National** Laboratories

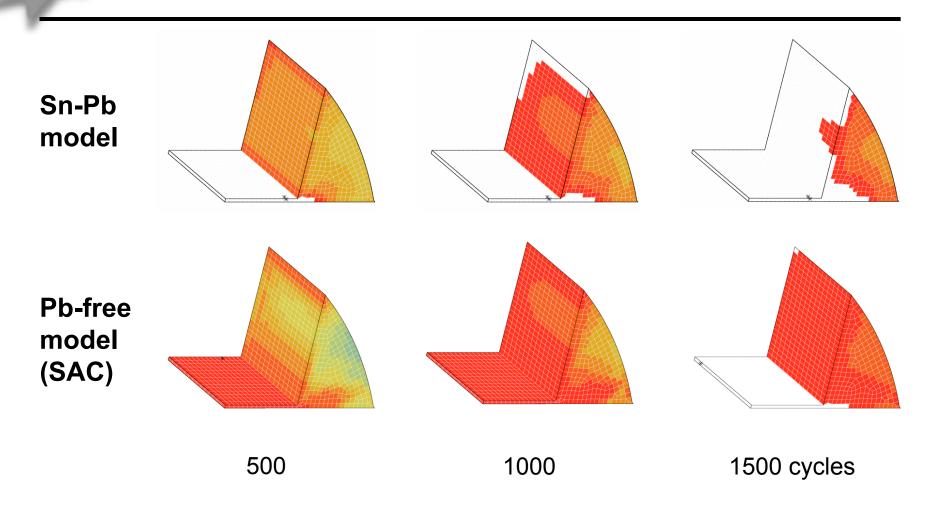
White elements are cracks.


SIP today

• SIP is used as a predictive design and analysis tool by Sandia, US Navy, Lockheed-Martin, and other customers.

Pb-free Solders

Pb-free LCC joint



•Approach:

- -Develop Unified Creep-Plasticity Damage (UCPD) Model for the Pb-free Solder 95.5Sn-3.9Ag-0.6Cu
- –We use the modeling paradigm developed for Pb-Sn solder
 - »Microstructurally-based damage model
 - »Fracture when microstructural parameter exceeds critical value
- –Implement the constitutive model in a life prediction method (Pb-free SIP)
- The model is newer, but results are promising.

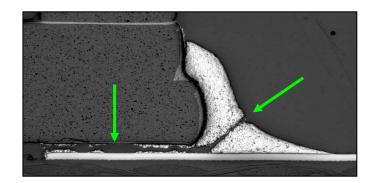
Comparing Pb-free to Pb-Sn solders

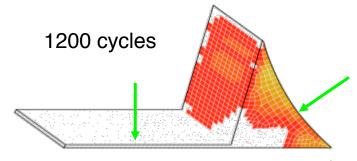
⇒Pb-free SAC solder appears to have a longer lifetime than PbSn solder in the same joint configuration.

Validation experiments support this generalization

 Pb-free solder joints appear to have a better reliability than Sn-Pb solder joints.

Sn-Pb solder		ı																					
		1-50		101-	201-	301- 400	401-	501- 600	601- 700	701- 800	801- 900	901- 1000	1001- 1100	1101- 1200	1201- 1300	1301- 1400	1401- 1500	1501- 1600	1601- 1700	1701- 1800	1801-	1901-	2001- 2100
Cycle Target:	get: 5000		51-100	200	300		500														1900	2000	
LCC1,LCC2	25																						
EBGA1	26																						
PLC1,PLC2	27																						
CBGA2	28																						
CBGA1	29																						
SOT931-SOT938	30																						
SOIC941-SOIC948	31																						
R951-R958	32																						
C921-C928	33																						
C911-C918	34																						
R911-R918	35																						
R921-R928	36																						


Pb-free solder Cycle Target: 5000								Fai	led			Pa	SS										
		1-50	51-100	101- 200	201- 300	301- 400	401- 500	501- 600	601- 700	701- 800	801- 900	901- 1000	1001- 1100	1101- 1200	1201- 1300	1301- 1400	1401- 1500	1501- 1600	1601- 1700	1701- 1800	1801- 1900	1901- 2000	2001- 2100
LCC1,LCC2	85																						
EBGA1	86																						
PLC1,PLC2	87																						
CBGA2	88																						
CBGA1	89																						
SOT931-SOT938	90																						
SOIC941-SOIC948	91																						
R951-R958	92																						
C921-C928	93																						
C911-C918	94																						
R911-R918	95															_							
R921-R928	96																						



Pb-free SIP today

• Pb-free SIP is beginning to be exercised as a predictive design and analysis tool by customers at Sandia and Lockheed-Martin.

LCC Pb-free test vehicle 900 thermal cycles

- Reliability of solder joints is an important design and stewardship issue.
- We have developed a desktop design and analysis package for solder joints, the Solder Interconnect Predictor (SIP)
 - Pb-Sn and Pb-free solders
 - Models entire lifetime to open circuit failure
- SIP uses experimental results to develop and to validate the model
 - Excellent agreement with experiment for both location and cycles to failure
- SIP is being used by customers to make engineering decisions in an ICME framework

Solder Constitutive Model Development

- Step 1. Capture mechanical response Elasticity, Plasticity, Creep Effects of temperature and loading rate
- Step 2. Include effects of microstructure on mechanical response
 Hall-Petch effect on flow strength
 Effect of coarsening on steady-state creep
- Step 3. Capture evolution of microstructure Coarsening
 Temperature and mechanical loading effects
 Use state variable to describe microstructure
- Step 4. Failure Lifetime prediction methodology
 Failure based on state of microstructure
 Coffin-Manson using plastic strain increment from fea
 Continuum damage approach

A Viscoplastic Model for Solder

Constitutive Relation

 $\dot{\sigma} = \mathbf{E} : (\mathbf{d} - \mathbf{d}^{in})$

Inelastic Deformation Rate

$$\mathbf{d^{in}} = \frac{3}{2}\dot{\gamma}\mathbf{n} = \frac{3}{2}fexp\bigg(\frac{Q}{R\theta}\bigg)\bigg(\frac{\lambda_o}{\lambda}\bigg)^psint^m\bigg(\frac{\tau}{\alpha(c+\hat{c})}\bigg)$$

Normalized Stress Difference Tensor

$$\mathbf{n} = \frac{\left(\mathbf{s} - \frac{2}{3}\mathbf{B}\right)}{\tau}$$

von Mises Effective Stress

$$\tau = \sqrt{\frac{3}{2} \left(\mathbf{s} - \frac{2}{3} \mathbf{B} \right) : \left(\mathbf{s} - \frac{2}{3} \mathbf{B} \right)}$$

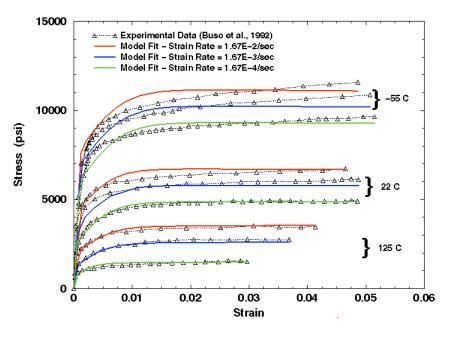
Evolution Eq. for State Variable c

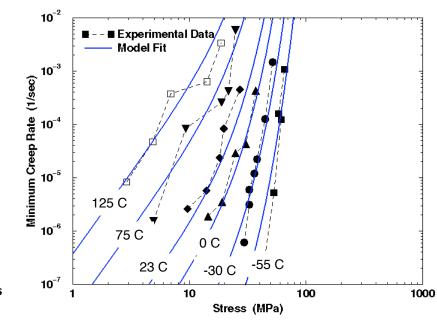
$$c = A_1 \dot{\gamma} - (A_2 \dot{\gamma} + A_3)(c - c_0)^2$$

Evolution Eq. for State Tensor B

$$\mathbf{B} = \mathbf{A_4} \mathbf{d}^{in} - (\mathbf{A_5} \dot{\gamma} + \mathbf{A_6}) \sqrt{\left(\frac{2}{3} \mathbf{B} : \mathbf{B}\right)} \mathbf{B}$$

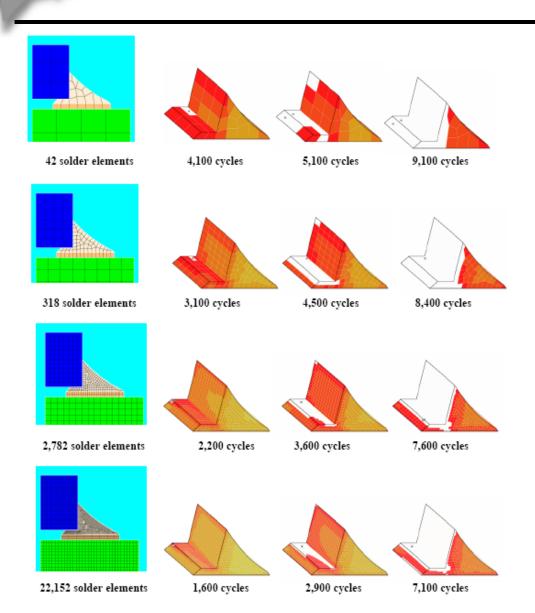
Effect of Coarsening on Strength (Hall-Petch Relationship)


$$\left(\hat{c} = A_7 \left(\frac{\lambda_0}{\lambda}\right)^A \right) A_3 = \frac{1}{2}$$


Coarsening Rate (Pb-rich Phase Size)

$$\hat{\lambda} = \frac{(A_9 + A_{10}\dot{\gamma})}{(\lambda - \lambda_0)^{A11}}$$

Constitutive Model vs. Experimental Data



Uniaxial Compression

Steady-State Creep

How significant is mesh dependence?

•Mesh dependence is minimal for cracking via weak elastic elements.

